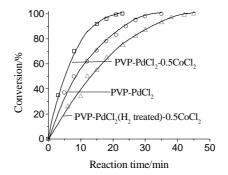
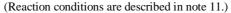
## Pretreatment of Polymer-Supported Pd-Co and Its Catalytic Activity

Yan GAO<sup>1</sup>\*, Shi Jian LIAO<sup>2</sup>, Fu Dong WANG<sup>2</sup>, Yue GAO<sup>1</sup>, Xi Gao JIAN<sup>1</sup>


<sup>1</sup>Department of Polymer Science & Materials, Dalian University of Technology, Dalian 116012 <sup>2</sup>Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023


**Abstract:** Various pretreatments of poly (N-vinyl-2-pyrrolidone) (PVP) protected palladium-cobalt system result in different catalytic activities in the hydrodechlorination of chlorobenzene.

Keywords: Pretreatment, polymer supported Pd-Co, catalytic activity.

For a heterogeneous catalyst, it is common that different methods of preparation result in a difference in the catalytic activity, although its composition is the same. For a traditional homogeneous catalyst with fixed composition, its catalytic activity usually does not change with the method of preparation. Polymer-supported catalysts are called the heterogenized homogeneous catalysts that combine the merits of homogeneous and heterogeneous catalysts and have been proved to be effective in many reactions<sup>1-9</sup>. In this letter, we show that the method of preparation of the polymer-supported system has significant effect on the catalyst activity.

Figure 1 Effect of addition sequence of CoCl<sub>2</sub> on the catalyst activity





PVP supported  $PdCl_2-0.5CoCl_2$  was used as catalyst precursor with the hydrodechlorination of chlorobenzene as a model reaction. The effects of various pretreatments of catalyst precursor on the catalyst activity were investigated. The addition sequence of  $CoCl_2$  displays influence on the catalytic activity of PVP-PdCl\_2-0.5CoCl\_2 as illustrated in **Figure 1**. It shows that PVP-PdCl\_2-0.5CoCl\_2 reduced by H<sub>2</sub> exhibits a high catalytic activity, while the PVP-PdCl\_2 (H<sub>2</sub> treated)-0.5CoCl\_2 formed by the addition of  $CoCl_2$  into PVP-PdCl\_2 reduced by hydrogen is not so active, which exhibits even a lower catalytic activity than PVP-PdCl\_2 itself. The addition sequence of  $CoCl_2$  changes its effect on the catalytic activity of the PVP

Yan GAO et al.

supported Pd. Base on the redox potential, Co<sup>2+</sup> is not reduced under hydrogen atmosphere and exhibits no catalytic activity, while Pd<sup>2+</sup> is reduced and forms nano-scale particles which has been confirmed by TEM test. In the first case, Co<sup>2+</sup> may exist inside the Pd particles and form new catalytic active species with higher catalytic activity. While for PVP-PdCl<sub>2</sub> (H<sub>2</sub> treated)-0.5CoCl, Co<sup>2+</sup> is added into the solution of the already preformed nano-scale Pd particles. In this case, Co<sup>2+</sup> is dissolved in the solvent and interferes with the catalytic reaction produced by the PVP-Pd system. Reduction temperature for the catalyst also influences the catalyst activity. The experimental results are listed in **Table 1** in which the other reaction conditions are kept the same and only the reduction temperature for PVP-PdCl<sub>2</sub>-0.5CoCl<sub>2</sub> system is different. It shows that at a lower reduction temperature, the catalyst results in a higher catalytic activity. At a lower temperature, the reduction of catalyst takes place slower than at a higher reduction temperature and forms smaller particles. As a result, it gives a higher catalytic activity. In addition, the rate of agitation and different reduction methods for PVP-PdCl<sub>2</sub>-0.5CoCl<sub>2</sub> also affect the catalytic activity. A strong agitation for the catalyst reduction gives a higher catalytic activity. The activity of catalyst reduced by NaBH<sub>4</sub> is higher than that by  $H_2$ .

Table 1 Influence of reduction temperature of catalyst precursor on the catalyst activity

| Entry | Reduction temperature /°C | Time for 100% dechlorination of PhCl /min |
|-------|---------------------------|-------------------------------------------|
| 1     | 28                        | 20                                        |
| 2     | 55                        | 23                                        |
| 3     | 78                        | 42                                        |

Other reaction conditions are described in note 11.

In summary, the pretreatment of PVP-PdCl<sub>2</sub>-0.5CoCl<sub>2</sub> system strongly influences its catalytic activity in the hydrodechlorination of chlorobenzene.

## Acknowledgment

We thank Dalian University of Technology for the financial support.

## **References and notes**

- N. Toshima, T. Yonezawa, M. Harada, K. Asdakura, Y. Iwasawa, Chem. Lett., 1990, 815. 1.
- N. Toshima, M. Harada, T. Yonezawa et al, J. Phys. Chem., **1991**, 95, 7448. N. Toshima and Y. Wang, Chem. Lett., **1993**, 1611. 2.
- 3
- 4.
- Y. Misumi, Y. Ishii, M. Hidai, J. Mol. Catal., **1993**, 78, 1. Z. Yu, S. Liao, Y. Xu, B. Yang, D. Yu, J. Chem. Soc., Chem. Commun., **1995**, 1155.; J. Mol. Catal. A: Chem., **1997**, 120, 247. 5.
- Z. Yu, Y. Xu, S. Liao, H. Jiang, B. Yang, D. Yu, H. Chen, X. Li, React. Polym., 1996, 31, 201. 6.
- B. Wan, S. Liao, Y. Xu, D. Yu, React. Kinet. Catal. Lett., 1998, 63, 397 7.
- Y. Gao, F. Wang, S. Liao, Y. Xu, D. Yu, React. Kinet. Catal. Lett., 1998, 64,351. 8
- H. Hirai, Y. Nakao, N. Toshima, J. Macromol. Sci., Chem., 1978, A12, 1117.
  PVP-PdCl<sub>2</sub>-0.5CoCl<sub>2</sub>(0.004 mmol Pd/mL, N/Pd=20) was prepared as follows: To a solution of 0.056 g PdCl<sub>2</sub> in 1 mL 5 mol/L HCl were added 75 mL ethanol and 0.724 g PVP. After stirring at room temperature for 48 h, half amount of CoCl<sub>2</sub> was added and stirred for 24 h.
- 11. A typical reaction procedure was conducted as follows: 0.41 mmol NaOAc was added into a 30 mL reaction bottle. After flushing with hydrogen, 6.5 mL absolute ethanol was introduced. Under the given reaction conditions, 1 mL catalyst solution was introduced and reduced for 15 min. At 55 °C, 4 mmol PhCl was added at a rate of agitation 1100 rpm. Determined by hydrogen uptake and GC analysis and when the percentage of dechlorination was 100%.

Received 2 February 2000